\square

MOGA DEVI MINDA MEMORIAL SCHOOL BAGLA HISAR FIRST PRE BOARD EXAM (2019-20)
 Time: 3Hrs

Note: All questions are compulsory.

General Instructions:

i. All the questions are compulsory.
ii. The question paper consists of 36 questions divided into 4 sections A, B, C, and D.
iii. Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
iv. There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each.
You have to attempt only one of the alternatives in all such questions.
v. Use of calculators is not permitted.

Section - A

* 1 to 10 are multiple choice type questions. Select the correct options:

1. If A and B are invertible matrices then which of the following is not correct:-
(A) $\operatorname{adj} \mathrm{A}=|\mathrm{A}| \mathrm{A}^{-1}$
(B) $\operatorname{det}\left(\mathrm{A}^{-1}\right)=[\operatorname{det}(\mathrm{A})]^{-1}$
(c) $(A B)^{-1}=B^{-1} A^{-1}$
(D) $(A+B)^{-1}=B^{-1}+A^{-1}$
2. If A and B are two matrices of order $3 X m$ and $3 X n$, respectively and $m=n$, then the order of matrix $(5 A-2 B)$ is
(a) $m \times 3$
(b) 3×3
(c) $m \times n$
(d) $3 \times n$
3. The position vectors of the point which divides the join of points $2 \vec{a}-3 \vec{b}$ and $\vec{a}+\vec{b}$ in the ratio $3: 1$ is
(a) $\frac{3 \vec{a}+\vec{b}}{2}$
(b) $\frac{7 \vec{a}-8 \vec{b}}{4}$
(c) $\frac{3 \vec{a}}{4}$
(d) $\frac{5 \vec{a}}{4}$
4. Two events E and F are independent if $\mathrm{P}(E)=0.3, P(E \cup F)=0.5$ then $P(/ F)-P(F / E)$ equals
(A) $\frac{2}{7}$
(B) $\frac{3}{35}$
(C) $\frac{1}{70}$
(D) $\frac{1}{7}$
5. Find the value of λ such that the vectors $\vec{a}=2 \hat{\imath}+\lambda \hat{7}+\hat{k}$ and $\vec{b}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ are orthogonal
(a) 0
(B) 1
(c) $3 / 2$
(d) $-5 / 2$
6. If $\cos \left(\sin ^{-1} \frac{2}{5}+\cos ^{-1} x\right)=0$, then x is equal to

chuess	CBSEGuess.com

(a) $\frac{1}{5}$
(b) $\frac{2}{5}$
(c) 0
(d) 1
7. The probability distribution of a discrete random variable x is given below:-

X	2	3	4	5
$\mathrm{P}(\mathrm{x})$	$\frac{5}{k}$	$\frac{7}{k}$	$\frac{9}{k}$	$\frac{11}{k}$

The value of k is
(a) 8
(b) 16
(d) 32
(d) 48
8. $\int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x$ equal to
(a) $2(\sin x+x \cos \theta)+c$
(b) $2(\sin x-x \cos \theta)+c$
(c) $2(\sin x+2 x \cos \theta)+c$
(d) $2(\sin x-2 x \cos \theta)+c$
9. The degree of the differential equation

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d y}{d x}\right) \text { is }
$$

(a) 1
(b) 2
(c) 3
(d) not defined
10. Integrating factor of $\mathrm{x} \frac{d y}{d x}-y=x^{4}-3 x$ is :
(a) x
(b) $\log x$
(c) $\frac{1}{x}$
(d) $-x$

* Q. 11 to Q 15 Fill in the blanks:-

11. If f be the greatest integer function defined as $f(x)=[x]$ and g be the modulus functions defined as $g(x)=|x|$, then the value of (gof) $\left(-\frac{5}{4}\right)$ is \qquad
12. If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}a x+1 & \text { if } x \geq 1 \\ x+2 & \text { if } x<1\end{array}\right.$ is continuous, then a should be equal to \qquad
13. If $\mathrm{x}\left[\begin{array}{l}2 \\ 1\end{array}\right]+\mathrm{y}\left[\begin{array}{l}3 \\ 5\end{array}\right]+\left[\begin{array}{c}-8 \\ -11\end{array}\right]=0$ then $\mathrm{x}-\mathrm{y}$ is \qquad
14. The curves $y=4 x^{2}+2 x-8$ and $y=x^{3}-x+13$ touch each other at the point \qquad

The maximum value of $\sin x+\cos x$ is \qquad

Closess	CBSEGuess.com

15. The projection of vector $\vec{a}=2 \hat{\imath}-\hat{7}+\hat{k}$ on $\vec{b}=\hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ is \qquad

* [Q - 16 to Q 20] Ans the following questions:-

16. If A and B are matrices of orders 3 and $|A|=3$ and $|B|=5$, then find $|3 A B|$
17. $\int_{0}^{\pi / 2} \operatorname{Cos} x e^{\sin x} d x$
18. $\int e^{x}(\cos x-\sin x) d x$

OR

$\int\left(\cos ^{2} 2 x-\sin ^{2} 2 x\right) d x$
19. $\int \frac{\sin x+\cos x}{\sqrt{1+\sin 2 x}} \mathrm{dx}$
20. Find the general solution of $\frac{d x}{d y}=e^{x-y}+x^{2} e^{-y}$

(Section - B)

21. Find the value of

$$
\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)+\cot ^{-1}\left(\frac{1}{\sqrt{3}}\right)+\tan ^{-1}\left(\operatorname{Sin}\left(-\frac{\pi}{2}\right)\right]
$$

OR
Let R be the relation in the set Z of integers given by $R=\{(a, b)$: 2divides $a-b\}$. Show that the relation R transitive? Write the equivalence class $\{0\}$.
22. If $\mathrm{x} \sin (\mathrm{a}+\mathrm{y})+\sin \mathrm{a} \cos (\mathrm{a}+\mathrm{y})=0$ prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$
23. A stone is dropped into a quiet lake and waves move in circles at a speed of $4 \mathrm{~cm} /$ second. At the instant when the radius of circular wave is 10 cm , how fast is the enclosed area increasing ?
24. Find λ if the vectors $\hat{\imath}-\hat{\jmath}+\hat{k}, 3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ and $\hat{\imath}+\lambda \hat{\jmath}-3 \hat{k}$ are coplanar.

OR

Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}=2[\vec{a} \vec{b} \vec{c}]$
25. If Mother, father and son line up at random for a family picture then find E / F if $E=$ son on one end, F : father in middle.
26. If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 7\end{array}\right]$ and $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then find k so that $\mathrm{A}^{2}=8 \mathrm{~A}+\mathrm{K} \mathrm{I}$

Section-C

27. Let $f \mathrm{~N} \longrightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{2}+12 \mathrm{x}+15$ show that $f: \mathrm{N} \longrightarrow \mathrm{S}$ where S is the name of the function, is invertible. Also find the inverse of F.

chasess	CBSEGuess.com

28. If $\mathrm{x}=\sin \mathrm{t}$ and $\mathrm{y}=\operatorname{Sin}$ pt prove that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-\mathrm{x} \frac{d y}{d x}+p^{2} y=0$

OR

If $\mathrm{y}=\tan \mathrm{x}+\sec \mathrm{x}$ prove that $\frac{d^{2} y}{d x^{2}}=\frac{\cos x}{(1-\sin x)^{2}}$
29. Solve the differential equation $\left(\tan ^{-1} y-x\right) d y=\left(1+y^{2}\right) d x$
30. $\int_{-1}^{3 / 2}|x \sin (\pi x)| d x$
31. Find the probability distribution of number of doublets in three throws of pair of dice.

OR

Bag 1 contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. One ball is transferred from Bag I to Bag II and then a ball is drown from Bag II. The ball so drawn is turned to be red in colour. Find the probability that the transferred ball is black.
32. A company manufactures two types of novelty souvenirs made of plywood. Souvenirs of type A require 5 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes each for assembling. There are 3 hours 20 minutes available for cutting and 4 hours for assembling. The profit of Rs. 5 each for type A and Rs. 6 each for type B souvenirs. How many souvenirs of each type should the company manufacture in order to maximize the profit? Solve by using LPP.

Section - D

33. By using properties of determinants show that $\left|\begin{array}{ccc}(b+c)^{2} & b a & c a \\ b a & (a+c)^{2} & b c \\ a c & b c & (b+a)^{2}\end{array}\right|=2 \mathrm{abc}(\mathrm{a}+\mathrm{b}+\mathrm{c})^{3}$

$$
\text { Given } A=\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right], B=\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]
$$

Find BA and use this to solve the system of equations
$y+2 z=7, \quad x-y=3, \quad 2 x+3 y+4 z=17$
34. Using the method of integration find the area lying above x - axes and included between the circle $x^{2}+y^{2}=8 x$ and inside the Parabola $y^{2}=4 x$

chase Sguess	

35. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2 R}{\sqrt{3}}$ Also find the maximum volume.

OR

Show that the semi vertical angle of the cone of the maximum volume and given slant height is $\tan ^{-1} \sqrt{2}$.
36. (a) Using Rolle's theorem find the point on the curve $y=x(x-4), x E[0,4]$ where the tangent is parallel to x - axis .
(b) If the matrix $\left[\begin{array}{ccc}0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0\end{array}\right]$ is a skew - Symmetric matrix, find the value of a, b, and c
(c) Find a vector \vec{r} of magnitude $3 \sqrt{2}$ units which makes an angles of $\pi / 4$ and $\frac{\pi}{2}$ with Y and Z - axes, respectively.

NOTE : THREE - D NOT INCLUDED IN QUESTION PAPERS

